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Abstract

The average thermal residual stress in continuous
boundary phase of polycrystalline ceramic compo-
sites was calculated with a simple thin boundary layer
model and a criterion for the self-cracking of the
boundary phase was derived under a certain assump-
tion. From the proposed model, the toughness of the
materials can be increased by both tensile and com-
pressive stress at boundaries when the crack propa-
gates transgranularly; and will be increased when the
stress at boundary is compressive for intergranular
fracture mode. The maximum increase is predicted to
be achieved at the boundary phase content not higher
than 33%. The experimental results with Y-TZP
doped with di�erent kinds of grain boundary phase
show a qualitative agreement with the prediction by the
model but the toughness increase is largely dependent
on the distribution feature of glass phases. From the
ideal particle-in-in®nite matrix model, the average
stress in matrix and in particle for possible practical
system was estimated and compared with the thin
boundary layer model. The criterion for the self-
cracking in matrix and in particle or at the particle±
matrix interface was derived with stress intensity fac-
tor approach. From the existing periodic stress ®eld
model for particulate composite, the toughness
increase is found not to increase monotonously with the
content of second phase. Alternatively a maximum
toughness increase is found, which is predicted to be
achieved at the particulate phase content of 14.3 vol%.
The experimental results on Y-TZP/Al2O3 composites
were compared with the prediction of the model.
# 1998 Elsevier Science Limited. All rights reserved.

1 Introduction

During cooling down of ceramics from sintering
temperature, the size of grains decreases by the rate
of its expansion (or more accurately, shrinkage)
coe�cients. However, as recognized widely by the
material researchers, the residual stress at grain
boundary and between di�erent phases is gener-
ated if there is a di�erence of the shrinkage rates
between grains and/or between phases. The resi-
dual stress by the di�erent shrinkage rates has been
calculated using very simpli®ed model, e.g. one
particle in in®nite uniform matrix model.1 Recently
the residual stress distribution for some more
complicated systems was calculated based on the
ideal particle-in-in®nite matrix model.2 The esti-
mation of stress and the e�ect of residual stress on
the toughness of the composites has been made for
particulate dispersed composites.
Toughness increase of the various composite

materials, including particulate composites,3±6

whisker7±9 and ®ber10,11 reinforced material sys-
tems has been observed intensively. The toughness
increase has been attributed to several mechanisms
such as crack bowing,12 crack de¯ections9,13,14

bridging and pull-out9,11 of whiskers, ®bers or
elongated grains behind the crack tip, and so on.
Estimation of the contribution of various mechan-
isms to the toughening e�ect of the composites was
also attempted.5,9,11 However, most of these e�ects
is, as a matter of fact, associated with the boundary
stress.2 For example, the crack de¯ection is caused
by the stress ®eld around a second phase particle
for particulate composites; and the toughening
e�ect partially caused by the friction force acted on
®ber or whiskers for ®ber and/or whisker reinforced
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composites is also the results of the residual stress.
Moreover, in spite of this, the contribution of these
mechanisms like crack de¯ection to the toughness
increase does not account to the total increase for
the toughness of particulate reinforced compo-
sites.15,16 It has been recognized that there will be
an e�ect of the residual stress itself on the
mechanical properties,15 as being estimated quan-
titatively by Taya et al.,16 that the periodic stress
®eld15 in the particulate composites does con-
tribute to the toughness increase. Some work on
WC±Co hard alloy17,18 has been conducted with
the concept of periodic stress ®eld, which shows the
dependence of the toughness of the materials on
the size of WC particles based on particle disper-
sion model.
In addition to the particulate composites, which

are generally fabricated by solid state sintering at
relatively high temperatures or by hot-pressing,
composites with thin continuous or semi-con-
tinuous grain boundary glass phase can be fabricated
simply by pressureless sintering at relative low
temperature. Therefore this kind of materials is of
signi®cance in practice. The mechanical properties
of the polycrystalline ceramics with continuous or
semi-continuous grain boundary phase are shown
to be usually good enough for practical applica-
tion, but nevertheless are subjected to the proper-
ties and distribution of the grain boundary phase.
The theoretical description of the continuous or
semi-continuous boundary stress and its e�ect on
the properties of ceramics were not be found in
literature. Considering the possible di�erences in
the thermal properties between the ceramic matrix
and grain boundary phase, it is believed that the
e�ect of such di�erence on crack propagation and
therefore fracture toughness of ceramic composites
should also exist. The present paper is to calculate
the boundary stress aroused by the di�erence in
thermal properties and analyze the critical condi-
tions for the self cracking of the boundary phase
and the contribution of the thermal residual stress
to the toughness of materials studied. The experi-
mental results on Y-TZP (yttria stabilized tetra-
gonal zirconia polycrystals) based materials with
glass boundary phase will be presented afterwards.
The particulate composites (particle dispersed sys-
tem) were also analyzed for e�ect of residual stress
on the toughness increase. In this case Y-TZP/
Al2O3 system was tested.

2 Experimental Procedure

Y-TZP material was selected as the matrix for com-
posites with continuous or semi-continuous grain
boundary phase. The super®ne Y-TZP powder was

prepared via coprecipitation method. The details of
the preparation method can be found in previous
published work.19 Three kinds of Al2O3±SiO2

based glass phase were selected: Li2O±Al2O3±SiO2,
MgO±Al2O3±SiO2 and Na2O±Al2O3±SiO2. The
detailed chemical compositions and thermal
expansion coe�cients of materials are listed in
Tables 1 and 2. The glass components were mixed
together with the Y-TZP powder by ball milling for
8 h with agate balls and the content of the glass
phases was designed to be 0, 1, 2 and 5 vol%.
The above material systems were selected for the

thin boundary layer model as proposed below. For
particulate composite the typical oxide particle/
particle system was Y-TZP/Al2O3. Composite
materials were fabricated both by mechanical mix-
ing of nano-Y-TZP powder with alumina powders
and by coprecipitation of mixed solution of Zr4+,
Y3+ and Al3+. The details of the fabrication pro-
cedure of the composites can be found in the pre-
vious reports.20±22

The Y-TZP/Glass and Y-TZP/Al2O3 composite
materials were sintered at 1250 and 1550�C for 2 h,
respectively, and the densities were measured with
the Archimedes method in distilled water. Fracture
toughness was measured by SENB (single edge
notched beam) method with a notch width of
0.2mm and a span of 20mm, or Vicker's indenta-
tion method according to the equation proposed
by Shetty et al.23 for the indentation-induced
Palmqvist crack system.

3 Model Analysis

3.1 Thin grain boundary model

3.1.1 Model assumption
If the content of the grain boundary phase is not
high enough as compared with the matrix and the
interface energy between glass phase and the
matrix grains is low enough as compared with that

Table 2. The percentage (�KIc%) of the fracture toughness
increase of the Y-TZP/glass composites and the di�erence
(��) of the thermal expansion coe�cients of glass phase with

Y-TZP (�Y-TZP=11�10ÿ6 Kÿ1)
Y-TZP/LAS Y-TZP/MAS Y/TZP/NAS

���10ÿ6 Kÿ1 >10 4.7 0.4
Cglass% 1 2 5 1 2 5 1 2 5
�K1c% 42 32 24 22 18 13 8 2 ÿ2

Table 1. Compositions (wt%) for the three kinds of glass

SiO2 Al2O3 Li2O MgO Na2O TiO2 a�10ÿ6

LAS 72.5 21.0 6.50 <1
MAS 58.2 19.2 13.4 9.2 6.3
NAS 44.5 31.5 16.7 7.3 11.4



between matrix grains, boundary phase can spread
uniformly at all boundaries throughout the mate-
rial. Then glass phase can be treated as a thin layer
with an identical thickness, t, between matrix
grains, as is shown schematically in Fig. 1. If
thickness t is small as compared with the grain size
of D, to simplify the problem, the residual stress
within the layer is assumed to be uniform and the
stress in matrix grains is also treated as an average
value.

3.1.2 Calculation of the residual stress
The thermal residual stress formed during cooling
down from the sintering temperature can be calcu-
lated according to the strain di�erence between the
practical strain in the composites and the strain in
single phase materials from the stress relaxation
temperature of each material to room temperature.
For the plane stress condition of mode I, the stres-
ses could be expressed as:

�b � Eb h"i ÿ "b� � �1�

�m � Em h"i ÿ "m� � �2�

where h"i is the practical true strain, and this
strain is assumed to be uniform within the compo-
site body, "b, "m are the respective strains for the
grain boundary phase and the matrix phase when
not restrained by each other from the relaxation
temperature to room temperature, �b and �m are
the stresses in boundary and in matrix; Eb and Em

are the Young's modulus of grain boundary and
matrix phases, respectively.
According to the balance condition for material

in unconstrained condition,

Cb�b � 1ÿ Cb� ��m � 0 �3�

where Cb is the content of the boundary phase, and
the value of strain, "b � h�bi�T, Em � h�mi�T,
here h�bi and h�mi are the average value of the
thermal expansion coe�cients for boundary and
matrix phases. The average strain can be calculated
as follows:

h"i � Eb�bCb � Em�m 1ÿ Cb� �
EbCb � Em 1ÿ Cb� � ��T � h�i�T �4�

therefore the thermal residual stress in boundary
and in matrix grain can be calculated as follows:

�b � Eb h�i ÿ �b� ��T �5�

�m � Em h�i ÿ �m� ��T �6�

here h�i is the average thermal expansion of the
composite. According to the thermal behavior of
the composites, h�i can be calculated from the data
of h�mi and h�bi and eqn (4).
From the above calculation, it can be found that

when �m > �b, (i.e. h�i > �b�; �b < 0, the grain
boundary will be in compression and the matrix will
be in tension; and if �m < �b; �h�i < �b�; �m < 0, in
contrast the grain boundary will be in tension and
the matrix will be in compression on average.

3.1.3 The allowable maximum residual stress for
the self-cracking of the materials
The thermal residual stress may cause self-cracking
if the tensile stress is overlarge. Under the condi-
tion of compressive stress in boundary, the tensile
stress in matrix is supposed to be very small and
the self-cracking of matrix is believed to be negli-
gible. When the boundary is in tension, the tensile
stress may cause cracking in boundary. The critical
boundary stress would be:

�c � Eb h�i ÿ �b� ��T � yKICC
1=2 �7�

here KIC is the toughness of the boundary phase, C
is the half critical defect length and y is a geometric
constant. Regarding the value of C being propor-
tional to the matrix particle size, D, there will be:

�2cD � constant �8�

3.1.4 E�ect of the boundary stress on the toughness
of the composites

a. For the intergranular cracking mode
When cracks propagate along the grain bound-

aries, the cracking resistance will be a�ected by the

Fig. 1. Schematic drawing for the thin boundary layer model,
where t is the thickness of the boundary and D represents the

particle size.



stress in the boundary. If the boundary is under the
stress of �b, there will be the strain energy at the
boundary, the energy density (strain energy per
unit of boundary area) will be:

de � 1=2"b�bt J mÿ2
ÿ � �9�

where t is the thickness of the boundary. The
cracking along the boundary is associated with the
release of the strain energy. Let � be the release
ratio of the strain energy in boundary (the strain
energy in matrix is considered not released during
the cracking of boundary), the cracking (fracture)
energy will be:


f;b � 
0f;b � 1=2�"b�bt �10�

where 
f;b and 
0f;b are the fracture energy of the
boundary with and without the thermal residual
stress, respectively. Considering the simple relation
between the thickness of boundary, t, and the grain
size, D for cubic shaped grains: t � CbD=3, under
the plane stress condition for mode I, there will be:

K1c � �2
f;bEb�1=2

� �2Eb

o
f;b � ��2bDCb=3�1=2

� ��Ko
1c�2 � ��2bDCb=3��1=2

�11�

From the above equation, the condition for self-
cracking can also be derived when the boundary is
under tension:

D�2 < 6
o
f;bEb=�Cb � 3 Ko

1c

ÿ �2
=�EbCb �12�

b. For the transgranular cracking mode

For this type of crack propagation mode, the
crack travel through a periodic ®eld of stress, i.e.
the crack propagates stepwisely through a com-
pressive±tensile stress ®eld. The schematic drawing
for the stress ®eld through which a crack propagate
is presented in Fig. 2. Under the cracking mode,
where the stress ®eld exerts an resistance to the
crack propagation, the resistance can be expressed
as an additional stress intensity factor acting on the
crack tip, KR

I :
18

KR
I �

1

�a� �1=2
�a
ÿa
� x� � a� x

aÿ x

� �1=2
dx �13�

where a is the period of the stress ®eld, x is a point
within the period, � x� � is the function of x. The
result of this integration is dependent on the stress

state of the boundary. For �m < �b, matrix is
under compression:

KR
I � ÿA1�mD

1=2 �14�

and for �m > �b, boundary is under compression:

KR
I � ÿA2�bt

2 �15�

where A1 and A2 are constants. So it is clear that
only the compressive stress would be e�ective in
altering the additional stress intensity factor. For
the crack propagating in the stress ®eld, total cri-
tical stress intensity factor will be:

Ka
I � KR

I � Ko
1c �16�

here Ka
I is the applied critical stress intensity factor,

Ko
1c is the toughness of the materials without the

stress ®eld, and this applied critical stress intensity
factor is, as a matter of fact, the toughness of the
material:

K10 � Ko
1c � A1�mD

1=2 when �m < �b� � �17�

and

K1c � Ko
1c � A2�bt

1=2 when �m > �b� � �18�

Fig. 2. Periodic stress ®eld in the proposed model system pre-
sented at Fig. 1: (a) �b > �m, (b) �b < �m.



3.2 Particle dispersion model for particulate
composites

3.2.1 Average stress estimation
3.2.1.1. Average stress estimation based on ideal

model. Stress ®eld for a spherical particle-in-uni-
form matrix has been known for a long time.1

When the radius of matrix, Ro approaches in®nity,
the stress Po� � in particle is:

Po � ÿ
�p ÿ �m

ÿ �
1�vm

2Em
� 1ÿ2vp

Ep

�T �19�

The stress in the matrix �r � Po
R
r

ÿ �3
for the radial

stress, and �� � ÿ 1
2 �r for circumferential stress,

where R is the radius of the particle, and r is the dis-
tance from a point in matrix to the particle's center.
a.1 > Ro >> R: under the condition the average

stress in the particle is assumed to be unchanged,
but that in matrix can be estimated as follows:

h�ri � ÿPo

�Ro

R

R

r

� �3

4�r2 dr
1

4�
3 R3

o ÿ R3
ÿ �

� Po
3R3

R3
o ÿ R3

ln
Ro

R

� 3Po
R

Ro

� �3

ln
Ro

R

h��i � Po
R

Ro

� �3

ln
Ro

R
�21�

b. Ro > R, and Ro ÿ R� �=R � 1: in this case the
calculation will be very complicated. A simpli®ed
calculation for average stress, h�mi, is presented as
follows:
Let the stress in particle P � �Po; 0 < � < 1, to

associate the value of � with the volume percentage
of particle, Cp, let � � f Cp

ÿ �
, we have:

P � f Cp

ÿ �
Po �22�

According to the balance principle: 1ÿ Cp

ÿ �
h�mi �PCp � 0

h�mi � ÿ
Pof Cp

ÿ �
Cp

1ÿ Cp
� ÿPof Cp

ÿ �
R3

R3
o ÿ R3

�23�

c. Ro > R and Ro=R! 1: according to eqn (23),
when the matrix (a thin layer in this case) around
the spherical particle is thin enough, the following
relation is present:

h�mi � ÿ
Pof Cp

ÿ �
Cp

1ÿ Cp

ÿ � � ÿPof Cp

ÿ �
D

6t
�24�

here D is the diameter of the spherical particle and
t is the thickness of the layer. Simply let
f Cp

ÿ � � 1ÿ Cp, eqns (23) and (24) become:

P � 1ÿ Cp

ÿ �
Po and h�mi � ÿCpPo �25�

3.2.1.2. Estimation of the average stress in prac-
tical system. As reported by Taya et al.,16 the
average stress in particulate composite system can
be estimated to be:

h�pi � ÿ
2Ep 1ÿ Cp

ÿ �
�"p

A
�26�

h�mi � 2EmCp�"p

A
�27�

here � and A are the constant associated with the
material parameter:

� � 1� vm� �= 1ÿ 2vp

ÿ �� �
Ep=Em

ÿ �
A � 1ÿ Cp

ÿ �
�� 2� � 1� vm� � � 3�Cp 1ÿ vm� �

�28�
and "p is the mis®t strain of particle:

"p �
�TR

TL

�p ÿ �m

ÿ �
� dT �29�

where TR and TL are the room temperature and the
temperature at which the stress is totally relaxed, �
is the isotropic tensor (Kronechner's delta).

3.2.2 Critical particle size estimation
3.2.2.1. Critical particle size estimation for the

self-cracking in matrix when am> ap. The critical
particle size for the spontaneous cracking of partic-
ulate composites has been estimated by Lange24

with the energy balance approach. Green25 also
discussed the problem and proposed a general
relation with the stress intensity factor approach:

Dmin
c / Kc=E"� �2 �30�

for the particulate composite by assuming that the
properties of the second phase are the same as the
matrix, i.e. regarding the composite as a `single
phase' material, here Dmin

c is the critical grain size,
" is the linear residual.25

Generally the mechanical properties of particu-
late phase is di�erent from the matrix phase. In the



case of �m> �p, the matrix is possible to crack
initialized from the particle-matrix interface under
the tensile circumferential stress aroused by the
thermal expansion mismatch and a penny-shaped
crack may form around the spherical particle.
Therefore the second phase particle in matrix can
be regarded as the source of cracking, i.e. the
defect of the critical size, from which matrix could
crack. According to the Gri�th equation for cri-
tical materials, we have:

Doc � B K1c=y��max� �2� B0 K1c=P� �2 �31�

where K1c is the toughness of matrix, B and B0 are
constants.
It is not attempted to calculate the constant B

and Doc, as the calculated values are usually much
smaller than those in practice.25 Equations (8), (12)
and (31) are in agreement with each other in nature
and also with that proposed by Lange24 and
Green.25 If the particle matches well with the
matrix, e.g. the di�erence of the thermal expansion
coe�cients is close to each other, the critical parti-
cle size will be large enough and the possibility for
self-cracking will be small.
For the particles of non-spherical shape, the

above criterion is believed to be applicable quali-
tatively in principle.
3.2.2.2. Critical particle size estimation for the

self-cracking when �m< �p. If the particle is in
tension and the matrix is in compression, there will
be the possibility for the cracking in particle or at
the particle±matrix interface. Simply from the
viewpoint of stress intensity factor, regarding the
dimension of particle diameter particle as being
proportional to defect size, the critical particle size
can be calculated as:

Doc / K1c;p=yP
ÿ �2 �32�

for cracking in particle, where K1c;p is the fracture
toughness of particle, K1c;p � 2Ep
f;p

ÿ �1=2
; 
f;p is

the fracture energy of particle, P is the tensile stress
within the particle, and

Doc / K1c;i=yP� �2 �33�

for cracking at the particle±matrix interface, where
K1c;i is the critical stress intensity factor at the par-
ticle±matrix interface, K1c;i � 2Ei
f;i� �1=2; Ei is the
average Young's modulus and 
f;i is the fracture
energy at the interface.

3.2.3 E�ect of the residual stress on the fracture
toughness
In the practical particulate composites, crack pro-
pagates through the periodic stress ®eld in which

the tensile and compressive stress alternates with
an approximately constant period. With the model
shown in Fig. 2 which is formerly proposed by
Culter,18 the relation between the toughness of the
particle dispersed composite and the residual stress
®eld would be:18

K1c � Ko
1c ÿ KR

I � Ko
1d � A3�m Qm� �1=2 �34�

for the condition �m < �p, the matrix is under
compression, here A3 is a constant, �m is the com-
pressive stress and Qm is the periodic length of
compressive stress in matrix, and

Kc
1 � Ko

1c ÿ KR
I � Ko

1c � A4�p Qp

ÿ �1=2 �35�

when �m > �p, the particle is under compression,
here A4 is another constant, �p is the compressive
stress and Qp is the periodic length of the com-
pressive stress in particle.

4 Experimental Results and Discussions

4.1 Thin boundary layer model: mechanical
properties of Y-TZP/glass composites
Figure 3 gives the relative density of the materials
sintered at 1250�C. The results show that the single
phase Y-TZP can be sintered to 94.4% of the the-
oretical density, and higher sintered density of the
composites can be achieved when the glass phase is
added. Glass phase is present at the boundaries
and/or at the triple points among the Y-TZP
grains, as can be seen in Fig. 4.
Figure 5 gives the toughness of the composite

measured by Vicker's indentation method using the
formula proposed by Shetty, et al.23 The toughness
of pure Y-TZP as determined by SENB (single
edge notched beam) method with the sample
dimension of 2.5�5�25, span of 20mm and notch
width of 0.2mm. The results of SENB method are

Fig. 3. Relative density of the Y-TZP/glass composites sin-
tered at 1250�C for 2 h.



higher than that by the indentation method.
Results show clearly that when small amount of
glass phase is added, the toughness of the compo-
site changes and the percentage of the change is
shown in Table 2. The percentage of the change of
the composites follows the order of LAS>
MAS>NAS. This order can be related to the dif-
ference of the thermal expansion coe�cients of the
glass phase with Y-TZP (see Table 2).

4.2 Relation between K1c and the content of the
boundary phase
The fracture mode of Y-TZP and Y-TZP/glass
composite is basically intergranular. According to
eqn (11), the toughness of the composite will
increase if the boundary is in compression. As a
matter of factor, the glass phase used in this study
is indeed in compression according to the equation,
and toughness does increase in the order of the
di�erence of the thermal expansion coe�cients.
However the relation between the toughness and
the glass phase content in practice is largely di�er-
ent from the prediction by the model, as analyzed
as follows.

4.2.1 For the intergranular mode
From eqns (4) and (5), K1c of the composites can be
found to increase with the content of the boundary
phase ®rst and then decrease. The content at which
maximum K1c can be achieved, Cb;m, as the ®rst
approximation and when �b < �m, is as follows:

Cb;m � �m ÿ �b

3 �m ÿ Eb

Em
�b

� � �36�

It can be seen that Cb;m would be equal to 33%
when Eb � Em. However, the experimental results
show that the Cb;m value is much lower that 33%.
This discrepancy can be explained with the di�er-
ent distribution characteristics of the glass phase at
di�erent contents of glass and the di�erent value of

0f . At low glass content, the glass phase tend to
accumulate at the triple points, and then crack pro-
pagates through the interface between Y-TZP
grains, so the value of 
0f is, as a matter of fact, very
close to that of Y-TZP ceramics, 
0f;TZP. At higher
glass content when the glass phase can spread uni-
formly and form a continuous or semi-continuous
thin layer at the boundaries, the fracture energy
would be that of boundary phase or between Y-TZP
grain and the boundary phase, i.e. the values of 
0f is
that of glass boundary phase, 
0f;b, or that of between
Y-TZP matrix and glass, 
0f;bÿm. As commonly
known the boundary phase is glass, 
0fÿg << 


0
f;TZP,

and 
0f;bÿm is also believed to be much less than

0f;TZP, therefore according to eqn (11) only at very
low content of glass phase the toughness increase can
be obtained. With the increase of glass phase con-
tribution, the toughness of the composites will
decrease due to the decreasing interface energy.

4.2.2 For the transgranular mode
For this kind of fracture mode, from eqns (4) and
(18), the value of Cb;m is the same as shown in eqn
(36). However, the transgranular mode in Y-TZP/
glass composite was not found.

4.3 Particulate composites: mechanical properties
of Y-TZP/Al2O3 composites
Figure 6 gives the results of fracture toughness of
mechanically mixed Y-TZP/Al2O3 composites
measured by both SENB method and Vicker's
indentation methods. The results show that the
composite toughness increases with alumina con-
tent and the maximum occurs at 5 vol%. Another
set of data for the similar materials system but with
di�erent processing (coprecipitation) method
shows the very similar results, as can be found in
Fig. 7. Part of the toughness increase can be
attributed to the phase transformation volume as
reported previously,25 however, the e�ect of ther-
mal residual stress is not negligible.

Fig. 4. TEM microstructure of Y-TZP/LAS-glass with the
glass content of 2 vol%.

Fig. 5. Fracture toughness of the Y-TZP/glass composites as a
function of the glass phase content.



4.4 Relation between K1c and the content of
particulate phase

The analysis by former researchers14,16 shows that
the toughness of the composite increases mono-
tonously with the increase of the particulate phase
content. This conclusion is usually not the case in
practice. The practical results often show that there
is a maximum toughness increase at a certain con-
tent of particulate phase. This content can be esti-
mated from the proposed model in Fig. 2. From
eqn (25) or (26), and eqn (35), the toughness
increase by the particulate phase is:

�K1c � A�p Qp

ÿ �1=2/ 1ÿ Cp

ÿ �
Qp

ÿ �1=2 �37�

It can be found from eqn (37) that there will be a
maximum increase of toughness at a given content
of particulate phase. Let Qp be proportional to the
particle diameter, and assuming that the particle
number is unchanged when the content changes, a
simple calculation show that the given content of
the particulate phase for maximum toughness
increase is 14.3 vol%. This estimation has been
proven to be qualitatively applicable for the
reports by many researchers for various particulate
composite systems in literature, such as for Y-TZP/
TiCp, Al2O3/SiCp, Al2O3/Y-TZPp, and so on.4±6,26

The experimental data by Taya16 are too few to
show this phenomena and his model did not give
this rule. Other models7,14 based on the crack
de¯ection or whisker or grain pullout did not pre-
dict this rule either. The practical content of parti-
cular phase for the maximum toughness for the
present system is lower than that value, which is
thought to be caused by the feature of phase
transformation during fracture, as the phase trans-
formation volume is shown to be larger at smaller
particulate phase content.

5 Conclusion

1. A thin boundary layer model is presented and
the boundary stress for composites with glass
phase is calculated. the stress occurred to be
dependent on the thermal expansion and the
content of the boundary phase. The criterion
for self-cracking at boundary is estimated and
shown to be dependent on the toughness of
boundary and the stress level.

2. Toughness of the composite material is pre-
dicted from the proposed model to increase
for both tensile and compressive stress at
boundaries when the crack propagates trans-
granularly. For intergranular fracture mode
toughness will increase when the stress at
boundary is compressive.

3. The experiment results with Y-TZP/glass
composite show a qualitative agreement with
the prediction given by the model but the glass
content for the toughness maximum is much
lower than predicted. This fact is explained by
the di�erent fracture energy at di�erent glass
content.

4. Average stress in possible particulate compo-
site system was estimated and compared with
the thin boundary layer model. The criterion
for the self-cracking in matrix or in particle or
at the particle±matrix interface was put for-
ward with the stress intensity factor approach
by regarding the particle as the defect of cri-
tical size.

5. From the periodic stress ®eld model for parti-
culate composites it is found that at 14.3 vol%
of the particulate phase content, the toughness
maximum for composites will be achieved.
This result is di�erent for the prediction made
by several existing models.

6. The experimental results on Y-TZP/Al2O3

composites show the toughness increase of
composites by adding alumina particles. The
results obtained were compared with the pre-
diction made for the periodic stress ®eld
model.

Fig. 6. Fracture toughness of mechanically mixed Y-TZP/
Al2O3 composites as a function of alumina content, (&) by
single edge notched beam method, (*) by Vickers indentation

method.

Fig. 7. Fracture toughness of coprecipitated Y-TZP/Al2O3

composites as a function of alumina content by Vicker's
indentation method.
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